کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488403 703892 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Texture-based Classification for the Automatic Rating of the Perivascular Spaces in Brain MRI
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Texture-based Classification for the Automatic Rating of the Perivascular Spaces in Brain MRI
چکیده انگلیسی

Perivascular spaces (PVS) relate to poor cognition, depression in older age, Parkinson's disease, inflammation, hypertension and cerebral small vessel disease when they are enlarged and visible in magnetic resonance imaging (MRI). In this paper we explore how to classify the density of the enlarged PVS in the basal ganglia (BG) using texture description of structural brain MRI. The texture of the BG region is described by means of first order statistics and features derived from the co-occurrence matrix, both computed from the original image and the coefficients yielded by the discrete wavelet transform (WSF and WCF, respectively), and local binary patterns (LBP). Experimental results with a Support Vector Machine (SVM) classifier show that WCF achieves an accuracy of 80.03%.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 90, 2016, Pages 9–14
نویسندگان
, , , ,