کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
488420 | 703892 | 2016 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Persistent Homology for Fast Tumor Segmentation in Whole Slide Histology Images
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Automated tumor segmentation in Hematoxylin & Eosin stained histology images is an essential step towards a computer-aided diagnosis system. In this work we propose a novel tumor segmentation approach for a histology whole-slide image (WSI) by exploring the degree of connectivity among nuclei using the novel idea of persistent homology profiles. Our approach is based on 3 steps: 1) selection of exemplar patches from the training dataset using convolutional neural networks (CNNs); 2) construction of persistent homology profiles based on topological features; 3) classification using variant of k-nearest neighbors (k-NN). Extensive experimental results favor our algorithm over a conventional CNN.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 90, 2016, Pages 119–124
Journal: Procedia Computer Science - Volume 90, 2016, Pages 119–124
نویسندگان
Talha Qaiser, Korsuk Sirinukunwattana, Kazuaki Nakane, Yee-Wah Tsang, David Epstein, Nasir Rajpoot,