کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488500 703898 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature Selection Using Relative Fuzzy Entropy and Ant Colony Optimization Applied to Real-time Intrusion Detection System
ترجمه فارسی عنوان
انتخاب ویژگی با استفاده از آنتروپی فازی نسبی و بهینه سازی کلینیک مورچه مورد استفاده در سیستم تشخیص نفوذ در زمان واقعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Intrusion Detection System (IDS) is one of the most important component of network defense mechanism. In an attempt to detect network attacks, network traffic features need to be identified and both attack and normal data need to be profiled. This paper proposes a set of network traffic features that can be extracted for Real-Time Intrusion Detection. This paper also proposes Fuzzy Entropy based heuristic for Ant Colony Optimization (ACO) in-order to search for global best smallest set of network traffic features for Real-Time Intrusion Detection Data set. The proposed feature reduction algorithm was tested on standard bench-mark UCI data sets, and found to be efficient. Further the algorithm was applied to Real-Time IDS data set and found to produce promising results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 85, 2016, Pages 503–510
نویسندگان
, , ,