کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488527 703898 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classifier Ensemble Design for Imbalanced Data Classification: A Hybrid Approach
ترجمه فارسی عنوان
طراحی گروهی طبقه بندی برای طبقه بندی داده های نامتقارن: رویکرد ترکیبی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Imbalanced learning for classification problems is the active area of research in machine learning. Many classification systems like image retrieval and credit scoring systems have imbalanced distribution of training data sets which causes performance degradation of the classifier. Re-sampling of imbalanced data is commonly used to handle imbalanced distribution as it is independent of the classifier being used. But sometimes they can remove necessary data of the class or can cause over-fitting. Classifier Ensembles have recently achieved more attention as effective technique to handle skewed data.The focus of the work is to gain advantages of both data level and classifier ensemble approach in order to improve the classification performance. We present a novel approach that initially applies pre-processing to the imbalanced dataset in order to reduce the imbalance between the classes. The pre-processed data is provided as training dataset to the classifier ensemble that introduces diversity by using different training datasets as well as different classifier models. The experimentation conducted on the eight imbalanced datasets from KEEL repository helps to prove the significance of the proposed method. A comparative analysis shows the performance improvement in terms of Area under ROC Curve (AUC).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 85, 2016, Pages 725–732
نویسندگان
, ,