کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488637 703922 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mammogram Classification using Law's Texture Energy Measure and Neural Networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Mammogram Classification using Law's Texture Energy Measure and Neural Networks
چکیده انگلیسی

Mammography is the best approach in early detection of breast cancer. In mammography classification, accuracy is determined by feature extraction methods and classifier. In this study, we propose a mammogram classification using Law's Texture Energy Measure (LAWS) as texture feature extraction method. Artificial Neural Network (ANN) is used as classifier for normal- abnormal and benign-malignant images. Training data for the mammogram classification model is retrieved from MIAS database. Result shows that LAWS provides better accuracy than other similar method such as GLCM. LAWS provide93.90% accuracy for normal-abnormal and 83.30% for benign-malignant classification, while GLCM only provides 72.20% accuracy for normal-abnormal and 53.06% for benign-malignant classification.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 59, 2015, Pages 92-97