کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488657 703922 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improvement of Demand Forecasting Models with Special Days
ترجمه فارسی عنوان
بهبود مدل پیش بینی تقاضا با روزهای خاص
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Forecasting ATM cash demands is a challenging research task. When the forecasting results are too high compared to the real demand, this will cause excessive cash at bank's ATMs and the cost of lost interest. On the other hand, if the forecast is too low, this will result in dissatisfaction of bank customers because of cash-outs. Although recent studies focused on new computational intelligence techniques for cash demand forecasting, this paper advocates the enhancement of the dataset to improve the prediction performance of forecasting models. In this study, 19 special days in the UK have been considered and NN5 competition dataset, which includes 735 daily withdrawal amounts from 111 ATMs in UK, was updated with these calendar days. After preprocessing step and application of exponential smoothing method, we achieved 21.57% average SMAPE for 56 days forecasting horizon. This study shows that good forecasting results can be reached by improving the data even if we do not apply complex computational intelligence techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 59, 2015, Pages 262-267