کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488944 704141 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Autonomous Reinforcement Learning with Experience Replay for Humanoid Gait Optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Autonomous Reinforcement Learning with Experience Replay for Humanoid Gait Optimization
چکیده انگلیسی

This paper demonstrates application of Reinforcement Learning to optimization of control of a complex system in realistic setting that requires efficiency and autonomy of the learning algorithm. Namely, Actor-Critic with experience replay (which addresses efficiency), and the Fixed Point method for step-size estimation (which addresses autonomy) is applied here to approximately optimize humanoid robot gait. With complex dynamics and tens of continuous state and action variables, humanoid gait optimization represents a challenge for analytical synthesis of control. The presented algorithm learns a nimble gait within 80 minutes of training.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 13, 2012, Pages 205-211