کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
489088 | 704152 | 2011 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Approximate Policy Iteration for Semi-Markov Control Revisited
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The semi-Markov decision process can be solved via reinforcement learning without generating its transition model. We briefly review the existing algorithms based on approximate policy iteration (API) for solving this problem for discounted and average reward under the infinite horizon. API techniques have attracted significant interest in the literature recently. We first present and analyze an extension of an existing API algorithm for discounted reward that can handle continuous reward rates. Then, we also consider its average reward counterpart, which requires an updating based on the stochastic shortest path (SSP). We study the convergence properties of the algorithm that does not require the SSP update.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 6, 2011, Pages 249-255
Journal: Procedia Computer Science - Volume 6, 2011, Pages 249-255