کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
489182 704190 2011 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Self-adaptive global best harmony search algorithm for training neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Self-adaptive global best harmony search algorithm for training neural networks
چکیده انگلیسی

This paper addresses the application of Self-adaptive Global Best Harmony Search (SGHS) algorithm for the supervised training of feed-forward neural networks (NNs). A structure suitable to data representation of NNs is adapted to SGHS algorithm. The technique is empirically tested and verified by training NNs on two classification benchmarking problems. Overall training time, sum of squared errors, training and testing accuracies of SGHS algorithm is compared with other harmony search algorithms and the standard back-propagation algorithm. The experiments presented that the proposed algorithm lends itself very well to training of NNs and it is also highly competitive with the compared methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 3, 2011, Pages 282-286