کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
489615 704581 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Variable Selection Method Considering Cluster Loading for Labeled High Dimension Low Sample Size Data
ترجمه فارسی عنوان
یک روش انتخاب متغیر با توجه به بارگذاری خوشه برای داده های با ضریب بالا برچسب های کم حجم داده های کم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

As the information society rapidly develops, there is an increased importance placed of dealing with high dimension low sample size (HDLSS) data, whose number of variables is much larger than the number of objects. Moreover, the selection of effective variables for HDLSS data is becoming more crucial. In this paper, a variable selection method considering cluster loading for labeled HDLSS data is proposed. Related to cluster loading, the conventional model considering principal component analysis has been proposed. However, the model can not be used for HDLSS data. Therefore, we propose a cluster loading model using a clustering result. By using the obtained cluster loading, we can select variables which belong to clusters unrelated with the given discrimination information represented by the labels of objects. Several numerical examples show a better performance of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 60, 2015, Pages 850-859