کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
489859 704634 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance and Quality Assessment of Similarity Measures in Collaborative Filtering Using Mahout
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Performance and Quality Assessment of Similarity Measures in Collaborative Filtering Using Mahout
چکیده انگلیسی

Recommendation systems use knowledge discovery and statistical methods for recommending items to users. In any recommendation system that uses collaborative filtering methods, computation of similarity metrics is a primary step to find out similar users or items. Different similarity measuring techniques follow different mathematical approaches for computation of similarity. In this paper, we have analyzed performance and quality aspects of different similarity measures used in collaborative filtering. We have used Apache Mahout in the experiment. In past few years, Mahout has emerged as a very effective and important tool in the area of machine learning. We have collected the statistics from different test conditions to evaluate the performance and quality of different similarity measures.Categories and Subject DescriptorsC.4 [Performance of Systems]: Measurement Techniques, Performance attributesGeneral TermsPerformance, Measurement

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 50, 2015, Pages 229-234