کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
490203 705691 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Empirical Study of Hadoop's Energy Efficiency on a HPC Cluster
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
An Empirical Study of Hadoop's Energy Efficiency on a HPC Cluster
چکیده انگلیسی

Map-Reduce programming model is commonly used for efficient scientific computations, as it executes tasks in parallel and distributed manner on large data volumes. The HPC infrastructure can effectively increase the parallelism of map-reduce tasks. However such an execution will incur high energy and data transmission costs. Here we empirically study how the energy efficiency of a map-reduce job varies with increase in parallelism and network bandwidth on a HPC cluster. We also investigate the effectiveness of power-aware systems in managing the energy consumption of different types of map-reduce jobs. We comprehend that for some jobs the energy efficiency degrades at high degree of parallelism, and for some it improves at low CPU frequency. Consequently we suggest strategies for configuring the degree of parallelism, network bandwidth and power management features in a HPC cluster for energy efficient execution of map-reduce jobs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 29, 2014, Pages 62-72