کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
490209 705691 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Technique for Parallel Share-frequent Sensor Pattern Mining from Wireless Sensor Networks
ترجمه فارسی عنوان
تکنیک برای مدل سازی مفهوم سنسور مرسوم مشترک از شبکه های سنسور بی؟
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

WSNs generate huge amount of data in the form of streams and mining useful knowledge from these streams is a challenging task. Existing works generate sensor association rules using occurrence frequency of patterns with binary frequency (either absent or present) or support of a pattern as a criterion. However, considering the binary frequency or support of a pattern may not be a sufficient indicator for finding meaningful patterns from WSN data because it only reflects the number of epochs in the sensor data which contain that pattern. The share measure of sensorsets could discover useful knowledge about numerical values associated with sensor in a sensor database. Therefore, in this paper, we propose a new type of behavioral pattern called share-frequent sensor patterns by considering the non-binary frequency values of sensors in epochs. To discover share-frequent sensor patterns from sensor dataset, we propose a novel parallel technique. In this technique, we develop a novel tree structure, called parallel share-frequent sensor pattern tree (PShrFSP-tree) that is constructed at each local node independently, by capturing the database contents to generate the candidate patterns using a pattern growth technique with a single scan and then merges the locally generated candidate patterns at the final stage to generate global share-frequent sensor patterns. Comprehensive experimental results show that our proposed model is very efficient for mining share-frequent patterns from WSN data in terms of time and scalability.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 29, 2014, Pages 124-133