کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
490370 707359 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Apriori Gene Set-based Microarray Analysis for Disease Classification Using Unlabeled Data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Apriori Gene Set-based Microarray Analysis for Disease Classification Using Unlabeled Data
چکیده انگلیسی

Gene set-based microarray analysis allows researchers to better analyze the gene expression data for studying complex diseases like cancer. By transforming gene expression data into another form using gene set information, the biomarkers will have higher discriminative power and should result in more accurate disease classification. This work compares two techniques for applying our previously developed NCFS-i-based method to deal with unlabeled data, i.e. to make predictive diagnosis. Seven cancer datasets that include 4 breast cancer and 3 lung cancer datasets were used in this study. The results show that inferring gene set activity using curated phenotype-correlated genes (PCOGs) sets of training data is a more robust method for applying NCFS-i- based method to work with unlabeled data, providing biologically relevant gene sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 23, 2013, Pages 137-145