کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
490387 707462 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dual Decomposition for Vietnamese Part-of-Speech Tagging
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Dual Decomposition for Vietnamese Part-of-Speech Tagging
چکیده انگلیسی

Part-of-speech (POS) tagging is a fundamental task in natural language processing (NLP). It provides useful information for many other NLP tasks, including word sense disambiguation, text chunking, named entity recognition, syntactic parsing, semantic role labeling, and semantic parsing. In this paper, we present a new method for Vietnamese POS tagging using dual decomposition. We show how dual decomposition can be used to integrate a word-based model and a syllable-based model to yield a more powerful model for tagging Vietnamese sentences. We also describe experiments on the Viet Treebank corpus, a large annotated corpus for Vietnamese POS tagging. Experimental results show that our model using dual decomposition outperforms both word-based and syllable-based models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 22, 2013, Pages 123-131