کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
490402 707462 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neural Networks with Comparatively Few Critical Points
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Neural Networks with Comparatively Few Critical Points
چکیده انگلیسی

A critical point is a point on which the derivatives of an error function are all zero. It has been shown in the literatures that the critical points caused by the hierarchical structure of the real-valued neural network could be local minima or saddle points, whereas most of the critical points caused by the hierarchical structure are saddle points in the case of complex- valued neural networks. Several studies have demonstrated that that kind of singularity has a negative effect on learning dynamics in neural networks. In this paper, we will demonstrate via some examples that the decomposition of high- dimensional NNs into real-valued NNs equivalent to the original NNs yields the NNs that do not have critical points based on the hierarchical structure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 22, 2013, Pages 269-275