کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
490405 707462 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimization of Approximate Inhibitory Rules Relative to Number of Misclassifications
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Optimization of Approximate Inhibitory Rules Relative to Number of Misclassifications
چکیده انگلیسی

In this work, we consider so-called nonredundant inhibitory rules, containing an expression “attribute:F value” on the right- hand side, for which the number of misclassifications is at most a threshold γ. We study a dynamic programming approach for description of the considered set of rules. This approach allows also the optimization of nonredundant inhibitory rules relative to the length and coverage. The aim of this paper is to investigate an additional possibility of optimization relative to the number of misclassifications. The results of experiments with decision tables from the UCI Machine Learning Repository show this additional optimization achieves a fewer misclassifications. Thus, the proposed optimization procedure is promising.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 22, 2013, Pages 295-302