کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
490406 707462 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Personalized Music Recommendation by Mining Social Media Tags
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Personalized Music Recommendation by Mining Social Media Tags
چکیده انگلیسی

Over the past few years, the recommender system has been proposed as a critical role to help users choose the preferred product from a massive amount of data. For music recommendation, most recent recommender systems made attempts to associate music with the user's preferences primarily based on user ratings. However, this kind of recommendation mechanism encounters the problem called rating diversity that makes the prediction results unreliable. To cope with this problem, in this paper, we propose a novel music recommendation approach that utilizes social media tags instead of ratings to calculate the similarity between music pieces. Through the proposed tag-based similarity, the user preferences hidden in tags can be inferred effectively. The empirical evaluations on real social media datasets reveal that our proposed approach using social tags outperforms the existing ones using only ratings in terms of predicting the user's preferences to music.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 22, 2013, Pages 303-312