کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
490437 707462 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive Soft Sensor Model Using Online Support Vector Regression with Time Variable and Discussion of Appropriate Parameter Settings
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Adaptive Soft Sensor Model Using Online Support Vector Regression with Time Variable and Discussion of Appropriate Parameter Settings
چکیده انگلیسی

Soft sensors are used in chemical plants to estimate process variables that are difficult to measure online. However, the predictive accuracy of adaptive soft sensor models decreases when sudden process changes occur. An online support vector regression (OSVR) model with a time variable can adapt to rapid changes among process variables. One problem faced by the proposed model is finding appropriate hyperparameters for the OSVR model; we discussed three methods to select parameters based on predictive accuracy and computation time. The proposed method was applied to simulation data and industrial data, and achieved high predictive accuracy when time-varying changes occurred.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 22, 2013, Pages 580-589