کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
491265 719579 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cardiac Arrhythmia Classification Using Neural Networks with Selected Features
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Cardiac Arrhythmia Classification Using Neural Networks with Selected Features
چکیده انگلیسی

This research is to present a new approach for cardiac arrhythmia disease classification. An early and accurate detection of arrhythmia is highly solicited for augmenting survivability. In this connection, intelligent automated decision support systems have been attempted with varying accuracies tested on UCI arrhythmia data base. One of the attempted tools in this context is neural network for classification. For better classification accuracy, various feature selection techniques have been deployed as prerequisite. This work attempts correlatio n-based feature selection (CFS) with linear forward selection search. For classification, we use incremental back propagation neural network (IBPLN), and Levenberg-Marquardt (LM) classification tested on UCI data base. We compare classification results in terms of classification accuracy, specificity, sensitivity and AUC. The experimental results presented in this paper show that up to 87.71% testing classification accuracy can be obtained using the average of 100 simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Technology - Volume 10, 2013, Pages 76-84