کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4918749 | 1428936 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hidden Markov Models revealing the household thermal profiling from smart meter data
ترجمه فارسی عنوان
مدل های پنهان مارکوف که نمایه حرارتی خانگی را از داده های هوشمند نشان می دهند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
زنجیره مخفی مارکوف، ماتریس احتمالی انتشار، مشاهده تکرار، مشخصات بار حرارتی ساختمان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
This work describes a methodology based on Hidden Markov Models (HMMs) that are applied for revealing household thermal load profiles which are not available to direct observation. This research is motivated by the necessity of reducing the energy consumption for cooling and heating in residential buildings. Our methodology uses data that is becoming readily available at households - hourly energy consumption records collected from smart electricity meters, as well as hourly outdoor air temperature records. The heat transfer regime, namely the states corresponding to lower or higher building hourly thermal loads related to the outdoor air temperatures, will be considered as the underlying mechanism affecting the generation of observations. We aggregate the observed data to obtain a certain number of clusters. The problem of HMM estimation is addressed and the subsequent HMMs are compared on the basis of information criteria, like Akaike and Bayesian Information Criteria. Our goal is to reveal the dynamic of building thermal load (heating/cooling) under the uncertainties induced by the residents' behavior. Consequently, we present examples of thermal load profiles generated using our best HMM on a testing facility located in the Polytechnic University of Bucharest campus, namely the UPB's passive building house.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 154, 1 November 2017, Pages 127-140
Journal: Energy and Buildings - Volume 154, 1 November 2017, Pages 127-140
نویسندگان
Anatoli Paul Ulmeanu, Vlad Stefan Barbu, Vladimir Tanasiev, Adrian Badea,