کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4918902 1428938 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
HVAC system energy optimization using an adaptive hybrid metaheuristic
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
HVAC system energy optimization using an adaptive hybrid metaheuristic
چکیده انگلیسی
Previous research efforts, for optimizing energy usage of HVAC systems, require either mathematical models of HVAC systems to be built or they require substantial historical operational data for learning optimal operational settings. We introduce a model-free control policy that begins learning optimal settings with no prior historical data and optimizes HVAC operations. The control policy is an adaptive hybrid metaheuristic that uses real-time data, stored in building automation systems (e.g., gas/electricity consumption, weather, and occupancy). It finds optimal setpoints at the building level and controls setpoints accordingly. The algorithm consists of metaheuristic (k-nearest neighbor stochastic hill climbing), machine learning (regression decision tree), and self-tuning (recursive brute-force search) components. The control policy uses smart selection of daily setpoints as its control basis, making the control schema complementary to legacy building management systems. To evaluate our approach, we used the DOE reference small office building in all U.S. climate zones and simulated different control policies using EnergyPlus. The proposed algorithm resulted in 31.17% energy savings compared to the baseline operations (22.5 °C and 3 K). The algorithm has a superior performance in all climate zones for the goodness of measure (i.e., normalized root mean square error) with a value of 0.047.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 152, 1 October 2017, Pages 149-161
نویسندگان
, , ,