کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4919147 | 1428943 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modeling energy consumption in residential buildings: A bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation
ترجمه فارسی عنوان
مدل سازی مصرف انرژی در ساختمان های مسکونی: تجزیه و تحلیل پایین به بالا بر اساس خوشه بندی الگوی رفتار ساکنان و شبیه سازی تصادفی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
رفتار شغلی، خوشه بندی الگو، مدل پایین تر، شبیه سازی انرژی ساختمان،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
In residential buildings, occupant behavior and occupancy status have a significant impact on energy consumption variation. Although the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) recommends a uniform occupancy schedule for building energy assessment, occupant behavior patterns and schedules could be different for each building due to occupants' lifestyles, preferences, occupations, and other differences. Existing occupant behavior models focus on analyzing occupants' sociodemographic characteristics to predict their energy consumption with statistical approaches. This paper proposes to identify and classify occupants' behavior with direct energy consumption outcomes and energy time use data through unsupervised clustering. Based on the American Time Use Survey (ATUS), the proposed approach integrates k-modes clustering and demographic-based probability neural networks and identifies 10 distinctive behavior patterns. With the results of the behavior classification and simulation, a bottom-up engineering model reveals that the proposed behavior model offers a more accurate and reliable prediction than the ASHRAE standard schedule. With qualified and sufficient time use data, the model is capable of automatically estimating energy consumption on even larger geographic scales.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 147, 15 July 2017, Pages 47-66
Journal: Energy and Buildings - Volume 147, 15 July 2017, Pages 47-66
نویسندگان
Longquan Diao, Yongjun Sun, Zejun Chen, Jiayu Chen,