کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4919199 | 1428946 | 2017 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Reductive bottom-up urban energy computing supported by multivariate cluster analysis
ترجمه فارسی عنوان
محاسبه انرژی شهری کاهش یافته با استفاده از تجزیه و تحلیل خوشه چند متغیری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
The present research effort investigates the requirements of an urban energy computing environment, aimed to support strategic decision making with regard to physical and technological interventions as well as behavioral, and contextual changes. Providing an analytical overview of some previous efforts, the present contribution introduces a novel two-step approach toward bottom-up urban energy computing, involving a reductive phase and a re-diversification process. The reductive phase is performed through an automated process within a GIS platform. The developed process utilizes available large-scale data to generated an energy-relevant representation of the urban building stock. A matrix of energy-influential building characteristics, depicted as aggregate descriptive indicators, is computed based on the generated representation and subjected to multivariate cluster analysis methods for stock classification. The resulting classes are represented through typical buildings, which undergo detailed performance simulation computations. The re-diversification process addresses the loss of diversity due to the reductive method, through employment of stochastic occupancy models and model parametrization. This paper reports on the development of the reductive step, illustrating the encountered challenges and the adopted responses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 144, 1 June 2017, Pages 372-386
Journal: Energy and Buildings - Volume 144, 1 June 2017, Pages 372-386
نویسندگان
Neda Ghiassi, Ardeshir Mahdavi,