کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
492169 721145 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparison of machine learning techniques for customer churn prediction
ترجمه فارسی عنوان
مقایسه تکنیک های یادگیری ماشین برای پیش بینی خوشه مشتری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

We present a comparative study on the most popular machine learning methods applied to the challenging problem of customer churning prediction in the telecommunications industry. In the first phase of our experiments, all models were applied and evaluated using cross-validation on a popular, public domain dataset. In the second phase, the performance improvement offered by boosting was studied. In order to determine the most efficient parameter combinations we performed a series of Monte Carlo simulations for each method and for a wide range of parameters. Our results demonstrate clear superiority of the boosted versions of the models against the plain (non-boosted) versions. The best overall classifier was the SVM-POLY using AdaBoost with accuracy of almost 97% and F-measure over 84%.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Simulation Modelling Practice and Theory - Volume 55, June 2015, Pages 1–9
نویسندگان
, , , ,