کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
492659 721632 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised Feature Pre-training of the Scattering Wavelet Transform for Musical Genre Recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Unsupervised Feature Pre-training of the Scattering Wavelet Transform for Musical Genre Recognition
چکیده انگلیسی

This paper examines the utilization of Sparse Autoencoders (SAE) in the process of music genre recognition. We used Scattering Wavelet Transform (SWT) as an initial signal representation. The SWT uses a sequence of Wavelet Transforms to compute the modulation spectrum coefficients of multiple orders which was already shown to be promising for this task. The Autoencoders can be used for pre-training a deep neural network, treated as an features detector, or used for dimensionality reduction. In this paper, SAEs were used for pre-training deep neural network on the data obtained from jamendo.com website offering music on creative commons licence. The pre-training phase is performed in unsupervised manner. Next, the network is fine-tuned in supervised way with respect to the genre classes. We used GTZAN database for fine-tuning the network. The results are compared with those obtained with training neural network in a standard way (with random weights initialization).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Technology - Volume 18, 2014, Pages 133-139