کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
492869 721660 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unscented Kalman Filters and Particle Filter Methods for Nonlinear State Estimation
ترجمه فارسی عنوان
فیلترهای کالمن و فیلترهای ذرات نوری برای تخمین وضعیت غیرخطی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

For nonlinear state space models to resolve the state estimation problem is difficult or these problems usually do not admit analytic solution. The Extended Kalman Filter (EKF) algorithm is the widely used method for solving nonlinear state estimation applications. This method applies the standard linear Kalman filter algorithm with linearization of the nonlinear system. This algorithm requires that the process and observation noises are Gaussian distributed. The Unscented Kalman Filter (UKF) is a derivative-free alternative method, and it is using one statistical linearization technique. The Particle Filter (PF) methods are recursive implementations of Monte-Carlo based statistical signal processing. The PF algorithm does not require either of the noises to be Gaussian and the posterior probabilities are represented by a set of randomly chosen weighted samples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Technology - Volume 12, 2014, Pages 65-74