کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
493504 | 721892 | 2007 | 20 صفحه PDF | دانلود رایگان |

Artificial neural networks (ANNs) and neuro-fuzzy systems (NFSs) have been widely used in modeling and control of many practical industrial nonlinear processes. However, most of them have concentrated on single-output systems only. In this paper, we present a comparative study using ANNs and co-active neuro-fuzzy inference system (CANFIS) in modeling a real, complicated multi-input–multi-output (MIMO) nonlinear temperature process of roller kiln used in ceramic tile manufacturing line. Using this study, we prove that CANFIS is better suited for modeling the temperature process in control phase. After that, a neural network (NN) controller has been developed to control the above mentioned temperature process due to a feedback control diagram. The designed controller performance is tested by a Visual C++ project and the resulting numerical data shows that this controller can work accurately and reliably when the roller kiln set-point temperature set changes.
Journal: Simulation Modelling Practice and Theory - Volume 15, Issue 10, November 2007, Pages 1239–1258