کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
494110 | 723955 | 2014 | 10 صفحه PDF | دانلود رایگان |

The 0–1 multidimensional knapsack problem (MKP) arises in many fields of optimization and is NP-hard. Several exact as well as heuristic methods exist. Recently, an artificial fish swarm algorithm has been developed in continuous global optimization. The algorithm uses a population of points in space to represent the position of fish in the school. In this paper, a binary version of the artificial fish swarm algorithm is proposed for solving the 0–1 MKP. In the proposed method, a point is represented by a binary string of 0/1 bits. Each bit of a trial point is generated by copying the corresponding bit from the current point or from some other specified point, with equal probability. Occasionally, some randomly chosen bits of a selected point are changed from 0 to 1, or 1 to 0, with an user defined probability. The infeasible solutions are made feasible by a decoding algorithm. A simple heuristic add_item is implemented to each feasible point aiming to improve the quality of that solution. A periodic reinitialization of the population greatly improves the quality of the solutions obtained by the algorithm. The proposed method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method gives a competitive performance when solving this kind of problems.
Journal: Swarm and Evolutionary Computation - Volume 14, February 2014, Pages 66–75