کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4945081 | 1438295 | 2017 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A shape-based adaptive segmentation of time-series using particle swarm optimization
ترجمه فارسی عنوان
تقسیم بندی سازگاری مبتنی بر شکل سری زمانی با استفاده از بهینه سازی ذرات
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
The increasing size of large databases has motivated many researchers to develop methods to reduce the dimensionality of data so that their further analysis can be easier and faster. There are many techniques for time-series' dimensionality reduction; however, majority of them need an input by the user such as the number of segments. In this paper, the segmentation problem is analyzed from the optimization point of view. A new approach for time-series' segmentation based on Particle Swarm Optimization (PSO) is proposed which is highly adaptive to time-series' shape and shape-based characteristics. The proposed approach, called Adaptive Particle Swarm Optimization Segmentation (APSOS), is tested on various datasets to demonstrate its effectiveness and efficiency. Experiments are conducted to show that APSOS is independent of user input parameters and the results indicate that the proposed approach outperforms common methods used for the time-series segmentation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Systems - Volume 67, July 2017, Pages 1-18
Journal: Information Systems - Volume 67, July 2017, Pages 1-18
نویسندگان
Hossein Kamalzadeh, Abbas Ahmadi, Saeid Mansour,