کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4945206 | 1438414 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient clustering of large uncertain graphs using neighborhood information
ترجمه فارسی عنوان
خوشه بندی کارآمد از نمودار های نامعمول بزرگ با استفاده از اطلاعات محله
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
خوشه بندی نمودارهای نامعلوم، خوشه بندی مبتنی بر گراف، الگوریتم خوشه بندی هورستیک،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This work addresses the problem of clustering large uncertain graphs. The data is represented as a graph where the proposed solution uses the neighborhood information for the purpose of clustering. The proposed approach converts an uncertain graph to a certain graph by predicting about the existence of the edges in the uncertain graph. For the purpose of prediction, a classifier is used. The proposed approach is compared with baseline approaches for clustering graphs having uncertainties over the edges; uncertain k-means (UK-Mean) and Fuzzy-DBSCAN (FDBSCAN). Additionally, the results are also compared with two state-of-the-art approaches namely, CUDAP (clustering algorithm for uncertain data based on approximate backbone) and PEEDR (partially expected edit distance reduction). Experiments are conducted using two natively uncertain and nine synthetically converted uncertain benchmark datasets. The results are compared with the baseline and the state-of-the-art methods using Davies-Bouldin index, Dunn index and Silhouette coefficient, widely used cluster validity indices. The results show that the proposed approach performs better than the other four methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 90, November 2017, Pages 274-291
Journal: International Journal of Approximate Reasoning - Volume 90, November 2017, Pages 274-291
نویسندگان
Zahid Halim, Muhammad Waqas, Abdul Rauf Baig, Ahmar Rashid,