کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4945259 | 1438416 | 2017 | 41 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Scaling up Bayesian variational inference using distributed computing clusters
ترجمه فارسی عنوان
بهینه سازی استنتاج تنوع بیزی با استفاده از خوشه های محاسباتی توزیع شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper we present an approach for scaling up Bayesian learning using variational methods by exploiting distributed computing clusters managed by modern big data processing tools like Apache Spark or Apache Flink, which efficiently support iterative map-reduce operations. Our approach is defined as a distributed projected natural gradient ascent algorithm, has excellent convergence properties, and covers a wide range of conjugate exponential family models. We evaluate the proposed algorithm on three real-world datasets from different domains (the Pubmed abstracts dataset, a GPS trajectory dataset, and a financial dataset) and using several models (LDA, factor analysis, mixture of Gaussians and linear regression models). Our approach compares favorably to stochastic variational inference and streaming variational Bayes, two of the main current proposals for scaling up variational methods. For the scalability analysis, we evaluate our approach over a network with more than one billion nodes and approx. 75% latent variables using a computer cluster with 128 processing units (AWS). The proposed methods are released as part of an open-source toolbox for scalable probabilistic machine learning (http://www.amidsttoolbox.com) Masegosa et al. (2017) [29].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 88, September 2017, Pages 435-451
Journal: International Journal of Approximate Reasoning - Volume 88, September 2017, Pages 435-451
نویسندگان
Andrés R. Masegosa, Ana M. Martinez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, DarÃo Ramos-López, Anders L. Madsen,