کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4945825 | 1438952 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
TaskMe: Toward a dynamic and quality-enhanced incentive mechanism for mobile crowd sensing
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Incentive is crucial to the success of mobile crowd sensing (MCS) systems. Over the different manners of incentives, providing monetary rewards has been proved quite useful. However, existing monetary-based incentive studies (e.g., the reverse auction based methods) mainly encourage user participation, whereas sensing quality is often neglected. First, the budget setting is static and may not meet the sensing contexts or user anticipation. Second, they do not measure the quality of data contributed. Third, the design of most incentive schemes is quantity- or cost-focused and not quality-oriented. To address these issues, we propose a novel MCS incentive mechanism called TaskMe. An LBSN (location-based social network)-powered model is leveraged for dynamic budgeting and proper worker selection, and a combination of multi-facet quality measurements and a multi-payment-enhanced reverse auction scheme are used to improve sensing quality. Experiments on several user studies and the crawled dataset validate TaskMe's effectiveness.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Human-Computer Studies - Volume 102, June 2017, Pages 14-26
Journal: International Journal of Human-Computer Studies - Volume 102, June 2017, Pages 14-26
نویسندگان
Bin Guo, Huihui Chen, Zhiwen Yu, Wenqian Nan, Xing Xie, Daqing Zhang, Xingshe Zhou,