کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946069 | 1439267 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parameter auto-selection for hemispherical resonator gyroscope's long-term prediction model based on cooperative game theory
ترجمه فارسی عنوان
انتخاب اتوماتیک پارامتر برای مدل پیش بینی طولانی مدت ژیروسکوپ نیمکره ای ژنراتور بر اساس نظریه بازی مشارکتی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بهینه سازی پارامتر، نظریه بازی تعاونی، ژیروسکوپ رزونانس نیم کره ای، پیش بینی طولانی مدت، قابلیت اطمینان پیش بینی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
As a new vibration gyro with features of high accuracy, long lifespan, no wear-out, and great reliability, the hemispherical resonator gyroscope's (HRG's) lifespan prediction without whole lifetime test is a tough task. Dai et al, based on data driven, proposed a residual modified autoregressive grey model ARGM to predict HRG's lifespan, in which the parameters however are selected by expert experience. In order to enhance the predictive lifetime, we propose a novel approach to auto-select parameters for the multi-parametric long-term prediction model ARGM based on cooperative game theory that we call CoG-ARGM. Our idea is to map parameter auto-selection of the prediction model to coalition formation in a combined cooperative game, which is proofed convex, where each parameter is respectively considered as a sub-coalition in its own pure cooperative game. In addition, we also bring failure mode originally derived from FMEA to evaluate the real-time prediction reliability. The experiments indicate that CoG-ARGM with real-time reliability evaluation yields high-quality prediction results. Furthermore, we also demonstrate the superiority of CoG-ARGM over state-of-the-art prediction methods through detailed experiments using evaluation criteria such as MAPE, Ln(Q) and time consumption on real HRG drift data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 134, 15 October 2017, Pages 105-115
Journal: Knowledge-Based Systems - Volume 134, 15 October 2017, Pages 105-115
نویسندگان
Chenglong Dai, Dechang Pi,