کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4946130 1439269 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Incremental fuzzy cluster ensemble learning based on rough set theory
ترجمه فارسی عنوان
یادگیری گروهی فازی اضافی بر اساس نظریه مجموعه خشن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
To deal with the uncertainty, vagueness and overlapping distribution within the data sets, a novel incremental fuzzy cluster ensemble method based on rough set theory (IFCERS) is proposed by the idea of combining clustering analysis task with classification techniques. Firstly, on the basis of soft clustering results, the positive region, boundary region and negative region of clustering ensemble are obtained by applying the construction of rough approximation in rough set theory, and then a group structure within data points of positive region is obtained by adopting a fuzzy cluster ensemble method. Secondly, by combining with the supervised ensemble learning method, e.g., random forests, the obtained group structure is used to construct the random forests classifier to classify the data points in boundary region. Finally, all the acquired group structure is used to train the random forests classifier to classify the data points of negative region. Experimental evaluations on UCI machine learning repository datasets verify the effectiveness of the proposed method. It is also shown that the quality of the final solution has a weak correlation with the ensemble size, the parameter setting on the rough approximations construction is appropriate, and the proposed method is robust towards the diversity from hard clustering members.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 132, 15 September 2017, Pages 144-155
نویسندگان
, , , , ,