کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946134 | 1439269 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Performance evaluation of time-frequency image feature sets for improved classification and analysis of non-stationary signals: Application to newborn EEG seizure detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله
![عکس صفحه اول مقاله: Performance evaluation of time-frequency image feature sets for improved classification and analysis of non-stationary signals: Application to newborn EEG seizure detection Performance evaluation of time-frequency image feature sets for improved classification and analysis of non-stationary signals: Application to newborn EEG seizure detection](/preview/png/4946134.png)
چکیده انگلیسی
The study also explores a second approach based on novel TF image (TFI) features that further improves TF-based classification of non-stationary signals. New TFI features are defined and extracted from the (t, f) domain; they include TF Hu invariant moments, TF Haralick features, and TF Local Binary Patterns (LBP). Using a state-of-the-art classifier, different metrics based on confusion matrix performance are compared for all extended TFS features and TFI features. Experimental results show the improved performance of TFI features over both TFS features and t-domain only or f-domain only features, for all TF representations and for all the considered performance metrics. The experiment is validated by comparing this new proposed methodology with a recent study, utilizing the same large and complex data set of EEG signals, and the same experimental setup. The resulting classification results confirm the superior performance of the proposed TFI features with accuracy improvement up to 5.52%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 132, 15 September 2017, Pages 188-203
Journal: Knowledge-Based Systems - Volume 132, 15 September 2017, Pages 188-203
نویسندگان
Boualem Boashash, Hichem Barki, Samir Ouelha,