کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946183 | 1439277 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Image super-resolution via adaptive sparse representation
ترجمه فارسی عنوان
تصویر فوق العاده رزولوشن از طریق نمایندگی انعطاف پذیر ضعیف
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Existing methods for image super-resolution (SR) usually use â1-regularization and â2-regularization to emphasize the sparsity and the correlation, respectively. In order to coordinate the sparsity and correlation synthetically, this paper proposes an adaptive sparse coding based super-resolution method, named ASCSR method, by means of establishing a regularization model, which effectively integrates sparsity and correlation as a regularization term in the model, and adaptively harmonizes the sparse representation and the collaborative representation. The method can balance the relation between the sparsity and collaboration adaptively via producing a suitable coefficient. To approximate the optimal solution of the model, we adopt a current popular and effective method, i.e., the alternating direction method of multipliers (ADMM). Compared with some other existing SR methods, the experimental results demonstrate that the proposed ASCSR method possesses outstanding performance in term of reconstruction effect, stability to the dictionary, and the noise immunity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 124, 15 May 2017, Pages 23-33
Journal: Knowledge-Based Systems - Volume 124, 15 May 2017, Pages 23-33
نویسندگان
Jianwei Zhao, Heping Hu, Feilong Cao,