کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
494620 862801 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Self-correcting ensemble using a latent consensus model
ترجمه فارسی عنوان
گروه خودپرداز با استفاده از یک مدل اجماع پنهان
کلمات کلیدی
گروهی مدل توافق باقیمانده، خود تصحیح، درخت تصمیم گیری، شبکه های عصبی مصنوعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• We proposed a latent consensus-based ensemble model.
• The method can self-correct malfunctioning expert system.
• Results show better performance of the proposed method.

Ensemble is a widely used technique to improve the predictive performance of a learning method by using several competing expert systems. In this study, we propose a new ensemble combination scheme using a latent consensus function that relates each predictor to the other. The proposed method is designed to adapt and self-correct weights even when a number of expert systems malfunction and become corrupted. To compare the performance of the proposed method with existing methods, experiments are performed on simulated data with corrupted outputs as well as on real-world data sets. Results show that the proposed method is effective and it improves the predictive performance even when a number of individual classifiers are malfunctioning.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 47, October 2016, Pages 262–270
نویسندگان
, , , ,