کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
494620 | 862801 | 2016 | 9 صفحه PDF | دانلود رایگان |
• We proposed a latent consensus-based ensemble model.
• The method can self-correct malfunctioning expert system.
• Results show better performance of the proposed method.
Ensemble is a widely used technique to improve the predictive performance of a learning method by using several competing expert systems. In this study, we propose a new ensemble combination scheme using a latent consensus function that relates each predictor to the other. The proposed method is designed to adapt and self-correct weights even when a number of expert systems malfunction and become corrupted. To compare the performance of the proposed method with existing methods, experiments are performed on simulated data with corrupted outputs as well as on real-world data sets. Results show that the proposed method is effective and it improves the predictive performance even when a number of individual classifiers are malfunctioning.
Figure optionsDownload as PowerPoint slide
Journal: Applied Soft Computing - Volume 47, October 2016, Pages 262–270