کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4946203 1439274 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Towards Context-aware Social Recommendation via Individual Trust
ترجمه فارسی عنوان
به سوی توصیه های متداول اجتماعی از طریق اعتماد فردی
کلمات کلیدی
سیستم توصیهگر، تقسیم ماتریس، اعتماد فردی، زمینه آگاه، شبکه های اجتماعی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Incorporating social network information and contexts to improve recommendation performance has been drawing considerable attention recently. However, a majority of existing social recommendation approaches suffer from the following problems: (1) They only employ individual trust among users to optimize prediction solutions in user latent feature space or in user-item rating space; thus, they exhibit low recommendation accuracy. (2) They use decision trees to perform context-based user-item subgrouping; thus, they can only handle categorical contexts. (3) They have difficulty coping with the data sparsity problem. To solve these problems, and accurately and realistically model recommender systems, we propose a social matrix factorization method to optimize the prediction solution in both user latent feature space and user-item rating space using the individual trust among users. To further improve the recommendation performance and alleviate the data sparsity problem, we propose a context-aware enhanced model based on Gaussian mixture model (GMM). Two real datasets (one sparse dataset and one dense dataset) based experiments show that our proposed method outperforms the state-of-the-art social matrix factorization and context-aware recommendation methods in terms of prediction accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 127, 1 July 2017, Pages 58-66
نویسندگان
, , , ,