کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946321 | 1439284 | 2017 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work we provide a new solution to perform an exact k-nearest neighbor classification based on Spark. We take advantage of its in-memory operations to classify big amounts of unseen cases against a big training dataset. The map phase computes the k-nearest neighbors in different training data splits. Afterwards, multiple reducers process the definitive neighbors from the list obtained in the map phase. The key point of this proposal lies on the management of the test set, keeping it in memory when possible. Otherwise, it is split into a minimum number of pieces, applying a MapReduce per chunk, using the caching skills of Spark to reuse the previously partitioned training set. In our experiments we study the differences between Hadoop and Spark implementations with datasets up to 11 million instances, showing the scaling-up capabilities of the proposed approach. As a result of this work an open-source Spark package is available.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 117, 1 February 2017, Pages 3-15
Journal: Knowledge-Based Systems - Volume 117, 1 February 2017, Pages 3-15
نویسندگان
Jesus Maillo, Sergio RamÃrez, Isaac Triguero, Francisco Herrera,