کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946400 | 1439282 | 2017 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Knowledge change rate-based attribute importance measure and its performance analysis
ترجمه فارسی عنوان
اندازه گیری اهمیت ویژگی دانش تغییر و تجزیه و تحلیل عملکرد آن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سیستم تصمیم گیری، اندازه گیری فازی، کسب دانش، آنتروپی، اندازه گیری مهم،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Attribute importance measure is important in such approaches as data system reduction and, multi-attribute decisions. In this paper, we present knowledge change rate-based attribute importance measures with structural features of fuzzy measure, abbreviated as BCKCR-AIM. We discuss theoretical construction strategies and structural features followed by remarks on constructing BCKCR-AIM. Finally, experimental results for several examples and UCI data sets show the connections and differences between BCKCR-AIM and other attribute importance measures. The advantage of our measure is that it uses attributes set changes to describe knowledge change and associated features between lower and upper approximations of decision classes and knowledge to reflect attribute importance. Our measure can improve feasibility and interpretability; therefore, BCKCR-AIM has wide application in such approaches as attributes reduction, feature extraction, information fusion, and expert systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 119, 1 March 2017, Pages 59-67
Journal: Knowledge-Based Systems - Volume 119, 1 March 2017, Pages 59-67
نویسندگان
Jin Chenxia, Li Fachao, Hu Qihui,