کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946472 | 1439291 | 2016 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel approach to pre-extracting support vectors based on the theory of belief functions
ترجمه فارسی عنوان
یک رویکرد جدید به پیشبرد استخراج بردارهای پشتیبانی بر اساس تئوری توابع باور
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Applications of the support vector machine (SVM) in the large scale datasets are seriously hampered by its high computational cost for training. In SVM training, the classification hyperplane is determined by support vectors (SVs). If those samples likely to be SVs can be pre-extracted and used for training, the computational cost can be reduced without the loss of classification accuracy. An approach to pre-extracting SVs is proposed where the training samples' uncertainty in terms of classification is modeled using belief functions. Those samples with a higher degree of uncertainty are more likely to be SVs. Our approach can also detect outliers and noisy samples. Experimental results based on benchmark datasets show that the proposed approach performs better compared with traditional approaches, where the training time is significantly reduced (approximate to one or two orders of magnitude), meanwhile it can obtain good classification accuracies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 110, 15 October 2016, Pages 210-223
Journal: Knowledge-Based Systems - Volume 110, 15 October 2016, Pages 210-223
نویسندگان
Deqiang Han, Weibing Liu, Jean Dezert, Yi Yang,