کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946613 | 1439410 | 2017 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust recursive absolute value inequalities discriminant analysis with sparseness
ترجمه فارسی عنوان
تجزیه و تحلیل غیر قابل انعطاف با ارزش مطلق بازگشتی قوی با ضخامت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تجزیه و تحلیل خطی خطی، استخراج ویژگی، قدر مطلق، مدل سازی قوی پیش بینی انعطاف پذیر،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, we propose a novel absolute value inequalities discriminant analysis (AVIDA) criterion for supervised dimensionality reduction. Compared with the conventional linear discriminant analysis (LDA), the main characteristics of our AVIDA are robustness and sparseness. By reformulating the generalized eigenvalue problem in LDA to a related SVM-type “concave-convex” problem based on absolute value inequalities loss, our AVIDA is not only more robust to outliers and noises, but also avoids the SSS problem. Moreover, the additional L1-norm regularization term in the objective makes sure sparse discriminant vectors are obtained. A successive linear algorithm is employed to solve the proposed optimization problem, where a series of linear programs are solved. The superiority of our AVIDA is supported by experimental results on artificial examples as well as benchmark image databases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 93, September 2017, Pages 205-218
Journal: Neural Networks - Volume 93, September 2017, Pages 205-218
نویسندگان
Chun-Na Li, Zeng-Rong Zheng, Ming-Zeng Liu, Yuan-Hai Shao, Wei-Jie Chen,