کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946640 | 1439409 | 2017 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Few-shot learning in deep networks through global prototyping
ترجمه فارسی عنوان
یادگیری چند ضلعی در شبکه های عمیق از طریق نمونه سازی جهانی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شبکه عصبی مصنوعی، تشخیص شی، یادگیری عمیق، یادگیری چند شاخه، انتقال یادگیری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Training a deep convolution neural network (CNN) to succeed in visual object classification usually requires a great number of examples. Here, starting from such a pre-learned CNN, we study the task of extending the network to classify additional categories on the basis of only few examples (“few-shot learning”). We find that a simple and fast prototype-based learning procedure in the global feature layers (“Global Prototype Learning”, GPL) leads to some remarkably good classification results for a large portion of the new classes. It requires only up to ten examples for the new classes to reach a plateau in performance. To understand this few-shot learning performance resulting from GPL as well as the performance of the original network, we use the t-SNE method (Maaten and Hinton, 2008) to visualize clusters of object category examples. This reveals the strong connection between classification performance and data distribution and explains why some new categories only need few examples for learning while others resist good classification results even when trained with many more examples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 94, October 2017, Pages 159-172
Journal: Neural Networks - Volume 94, October 2017, Pages 159-172
نویسندگان
Sebastian Blaes, Thomas Burwick,