کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946754 | 1439417 | 2017 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new hyperbox selection rule and a pruning strategy for the enhanced fuzzy min-max neural network
ترجمه فارسی عنوان
یک قانون انتخاب جدید هیپربک و یک استراتژی هرس برای افزایش شبکه عصبی مینیمم حداکثر فازی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, we extend our previous work on the Enhanced Fuzzy Min-Max (EFMM) neural network by introducing a new hyperbox selection rule and a pruning strategy to reduce network complexity and improve classification performance. Specifically, a new k-nearest hyperbox expansion rule (for selection of a new winning hyperbox) is first introduced to reduce the network complexity by avoiding the creation of too many small hyperboxes within the vicinity of the winning hyperbox. A pruning strategy is then deployed to further reduce the network complexity in the presence of noisy data. The effectiveness of the proposed network is evaluated using a number of benchmark data sets. The results compare favorably with those from other related models. The findings indicate that the newly introduced hyperbox winner selection rule coupled with the pruning strategy are useful for undertaking pattern classification problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 86, February 2017, Pages 69-79
Journal: Neural Networks - Volume 86, February 2017, Pages 69-79
نویسندگان
Mohammed Falah Mohammed, Chee Peng Lim,