کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
494694 862802 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multimodal medical image fusion using PCNN optimized by the QPSO algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Multimodal medical image fusion using PCNN optimized by the QPSO algorithm
چکیده انگلیسی

This paper proposed a method to fuse multimodal medical images using the adaptive pulse-coupled neural networks (PCNN), which was optimized by the quantum-behaved particle swarm optimization (QPSO) algorithm. In this fusion model, two source images, A and B, were first processed by the QPSO-PCNN model, respectively. Through the QPSO algorithm, the PCNN model could find the optimal parameters for the source images, A and B. To improve the efficiency and quality of QPSO, three evaluation criteria, image entropy (EN), average gradient (AG) and spatial frequency (SF) were selected as the hybrid fitness function. Then, the output of the fusion model was obtained by the judgment factor according to the firing maps of two source images, which maybe was the pixel value of the image A, or that of the image B, or the tradeoff value of them. Based on the output of the fusion model, the fused image was gained. Finally, we used five pairs of multimodal medical images as experimental data to test and verify the proposed method. Furthermore, the mutual information (MI), structural similarity (SSIM), image entropy (EN), etc. were used to judge the performances of different methods. The experimental results illustrated that the proposed method exhibited better performances.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 46, September 2016, Pages 588–595
نویسندگان
, , , ,