کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
494739 862803 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A computational intelligence approach to efficiently predicting review ratings in e-commerce
ترجمه فارسی عنوان
یک رویکرد هوش محاسباتی برای پیش بینی دقیق رأی های بازبینی در تجارت الکترونیک
کلمات کلیدی
بررسی مشتری پیش بینی اعتبار، داده کاوی، بی اعتبار در بررسی مشتری، رویکرد فازی، فراگیری ماشین، هوش کامپیوتری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• A computational intelligence architecture for customers’ reviews prediction.
• Addressing crucial issues in the field of reviews prediction as dimensionality of data and accuracy.
• This synergetic approach yields better performance than state-of-the-art rating predictors.

Sentiment analysis, also called opinion mining, is currently one of the most studied research fields which aims to analyse people's opinions. E-commerce websites allow users to share opinions about a product/service by providing textual reviews along with numerical ratings. These opinions greatly influence future consumer purchasing decisions. This paper introduces an innovative computational intelligence framework for efficiently predicting customer review ratings. The framework has been designed to deal with the dimensionality and noise which is typically apparent in large datasets containing customer reviews. The proposed framework integrates the techniques of Singular Value Decomposition (SVD) and dimensionality reduction, Fuzzy C-Means (FCM) and the Adaptive Neuro-Fuzzy Inference System (ANFIS). The performance of the proposed approach returned high accuracy and the results revealed that when large datasets are concerned, only a fraction of the data is needed for creating a system to predict the review ratings of textual reviews. Results from the experiments suggest that the proposed approach yields better prediction performance than other state-of-the-art rating predictors which are based on the conventional Artificial Neural Network, Fuzzy C-Means, and Support Vector Machine approaches. In addition, the proposed framework can be utilised for other classification and prediction tasks, and its neuro-fuzzy predictor module can be replaced by other classifiers.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 44, July 2016, Pages 153–162
نویسندگان
, ,