کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4949348 | 1440047 | 2017 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An SVM-like approach for expectile regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Expectile regression is an interesting tool for investigating conditional distributions beyond the conditional mean. It is well-known that expectiles can be described with the help of the asymmetric least square loss function, and this link makes it possible to estimate expectiles in a non-parametric framework with a support vector machine like approach. For the underlying optimization problem, an efficient sequential-minimal-optimization-based solver is developed and its convergence derived. The behavior of the solver is investigated by conducting various experiments, and the results are compared with the solver for quantile regression and the recent R-package ER-Boost.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 109, May 2017, Pages 159-181
Journal: Computational Statistics & Data Analysis - Volume 109, May 2017, Pages 159-181
نویسندگان
Muhammad Farooq, Ingo Steinwart,