کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
494937 862810 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inferential sensor-based adaptive principal components analysis of mould bath level for breakout defect detection and evaluation in continuous casting
ترجمه فارسی عنوان
تجزیه و تحلیل اجزای اصلی سازگار اصلی سنسور استنتاجی از سطح حمام قالب برای تشخیص نقص برش و ارزیابی در ریخته گری مستمر
کلمات کلیدی
سنسور نرم ریخته گری مستمر، تجزیه و تحلیل اجزای اصلی سازگار، تشخیص و ارزیابی برک آوت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• Prediction capacities of PCA algorithm have been improved using an adaptive form-based moving windows technique.
• Breakout defect has been detected and evaluated using the main process data of continuous casting process.
• An accurate and precise model is obtained; performance of such model is evaluated using MSE index.

This paper is concerned with a method for breakout defect detection and evaluation in a continuous casting process. This method uses adaptive principal component analysis (APCA) as a predictor of inputs–outputs model, which are defined by the mould bath level and casting speed. The main difficulties that cause breakout in continuous casting are, generally, phenomenon related to the non-linear and unsteady state of the metal solidification process. PCA is a modelling method based on linear projection of the principal components; the adaptive version developed in this work uses the sliding window technique for the estimation of the model parameters. This recursive form updates the new model parameters; it gives a reliable and accurate prediction. Simulation results compare PCA, APCA, non-linear system identification using neural network (NN) and support vector regression (SVR) methods showing that the APCA gives the best Mean Squared Error (MSE). Based on the MSE, the proposed approach is analyzed, tested and improved to give an accurate breakout detection and evaluation system.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 34, September 2015, Pages 120–128
نویسندگان
, , , ,