کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4949500 1440192 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
F-WORM colorings: Results for 2-connected graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

         F-WORM colorings: Results for 2-connected graphs
چکیده انگلیسی
Given two graphs F and G, an F-WORM coloring of G is an assignment of colors to its vertices in such a way that no F-subgraph of G is monochromatic or rainbow. If G has at least one such coloring, then it is called F-WORM colorable and W−(G,F) denotes the minimum possible number of colors. Here, we consider F-WORM colorings with a fixed 2-connected graph F and prove the following three main results: (1) For every natural number k, there exists a graph G which is F-WORM colorable and W−(G,F)=k; (2) It is NP-complete to decide whether a graph is F-WORM colorable; (3) For each k≥|V(F)|−1, it is NP-complete to decide whether a graph G satisfies W−(G,F)≤k. This remains valid on the class of F-WORM colorable graphs of bounded maximum degree. We also prove that for each n≥3, there exists a graph G and integers r and s such that s≥r+2, G has Kn-WORM colorings with exactly r and also with s colors, but it admits no Kn-WORM colorings with exactly r+1,…,s−1 colors. Moreover, the difference s−r can be arbitrarily large.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 231, 20 November 2017, Pages 131-138
نویسندگان
, ,